International Food Research Journal 32(3): 621 - 640 (June 2025)

Journal homepage: http://www.ifrj.upm.edu.my

Review

Pseudomonas fluorescens and P. aeruginosa contaminations of poultry and poultry products: A review on food safety and quality

Syamimi Hanim, M. S., Ishamri, I., Nurhayati, Y., Abd Ghani, A. and *Tang, J. Y. H.

Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200 Besut, Terengganu, Malaysia

Article history

Received: 13 August 2024 Received in revised form: 10 April 2025 Accepted: 19 May 2025

Keywords

food spoilage, food safety, exoenzymes, virulence, biofilm, detection methods

Abstract

The presence of *Pseudomonas* spp. in food poses a health concern due to their ability to grow during cold storage. Pseudomonas fluorescens and P. aeruginosa are two important species that cause food spoilage and foodborne illness, respectively. P. fluorescens is responsible for food spoilage due to secretion of protease and lipase enzymes, which cause off-odours, off-flavours, and rancidity, even under refrigeration storage. P. aeruginosa is recognised as opportunistic pathogens that causes illness in infected individuals. P. aeruginosa harbours multiple virulence factors that enable it to be a successful pathogen to cause infection in humans. Both of these bacteria commonly contaminate poultry products which cause quality and safety issues. They are capable of forming biofilm in food processing environments, and exhibit multiple antibiotic resistances. The biofilm formation enables these bacteria to persist in the environments, and contaminate food if improper sanitation and handling happen. The contaminated food will have a shorter shelf life which leads to food wastage. Pathogenic P. aeruginosa that exhibits multiple antibiotic resistance will cause serious foodborne illness to infected individuals due to failure in clinical treatment. As such, controlling the growth of these bacteria in poultry is important which can be done through good hygiene practices, modified air packaging, biopreservatives, and low temperature storage. Detection of these bacteria in poultry will also help to ensure the quality and safety related to poultry. Selective agar plating is an important method to isolate *Pseudomonas* spp., which is important for further analysis. Molecular methods such as polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are pivotal for rapid, robust, and specific detection of the targeted bacteria.

DOI

https://doi.org/10.47836/ifrj.32.3.01

© All Rights Reserved

Introduction

Taxonomy and characteristics

Pseudomonas spp. are ubiquitous in nature, and have become one of the most significant groups of known bacteria worldwide. The genus contains a total of 144 species, making it one of the bacterial genera with the largest number of species (Gomila et al., 2015), and incorporates species that have been isolated globally in various environments (Silby et al., 2011; Molina et al., 2013). All Pseudomonas spp. are Gram-negative rods with straight or long curves, and motile either by one polar flagellum or even more (Arslan et al., 2011; Kumar et al., 2019). They are non-spore forming, obligate aerobic, and oxidase-positive (Adams and Moss, 2008). Moreover, they are considered significant as psychotropic bacteria, and have been commonly isolated from foods, and they

contributed to the spoilage in foods that have been stored at refrigeration temperatures due to their ability to grow at low temperature (Al-Rodhan and Nasear, 2016; Caldera et al., 2016). Pseudomonas spp. can grow optimally in a pH range from 6.5 to 8.0, and a temperature range from 2 to 35°C (Ercolini et al., 2010; Nowak et al., 2012). The majority of the isolates can thrive in low temperatures, and possess enzymes that may impact the overall quality of food products, particularly those stored under cold (Caldera *et al.*, 2016). conditions Previous researchers reported that Pseudomonas spp. are highly active in producing enzymes especially proteases and lipases (Mhenni et al., 2023).

Among the 144 established species, most *Pseudomonas* spp. known to cause illness in humans are associated with opportunistic infection including *P. aeruginosa*, *P. fluorescens*, *P. putida*, *P. cepacia*,

P. stutzeri, and P. maltophilia (Iglewski, 1996). Pseudomonas genus also includes most relevant specific agents of food spoilage (Mellor et al., 2011), important plant pathogens (Xin et al., 2018), and also opportunistic pathogens to animals and humans (Moradali et al., 2017). A recent study by Bloomfield et al. (2023) highlighted that Pseudomonas spp. are the predominant microbial genus found on retail foods such as seafood and foods from animal and plant origins.

Generally, *P. putida* is classified within the *fluorescent* group of opportunistic *Pseudomonas* species (Baykal *et al.*, 2022). It has been noted that *P. putida* is less pathogenic than other *Pseudomonas* spp., and susceptible to numerous antimicrobial agents. As a result, infections caused by *P. putida* are uncommon in clinical settings (Cho and Lee, 2018). Several previous studies mentioned that although *P. fluorescens* infections are uncommon, the use of antibiotics may become ineffective. However, in rare cases, it can be found as an opportunistic pathogen, and lead to fatal diseases (Donnarumma *et al.* 2010; Naghmouchi *et al.*, 2012), which is similar to *P. aeruginosa* as described by Austin and Austin (2016) and Duman *et al.* (2021).

Pseudomonas spp. contamination and their potential hazards towards food industry and human health

Spoilage refers to any alteration in a food product that makes it unsatisfactory to consumers based on its sensory characteristics (Gram et al., 2002). Besides physical damage, oxidation, and colour change, spoilage symptoms can also the undesirable attributed to growth microorganisms to unacceptable levels, as well as the activity of endogenous enzymes (Ercolini et al., 2010). Food spoilage caused by *Pseudomonas* spp. may happen in a number of ways. Most *Pseudomonas* spp. have been recognised as one of the crucial specific spoilage microorganisms due to their ability to excessively proliferate, which may accelerate the of nitrogenous compounds, breakdown eventually contribute to product deterioration (Mhenni et al., 2023). Moreover, previous researchers highlighted that *Pseudomonas* spp. are capable of producing abnormal colours such as green fluorescent, yellow, red, and blue pigments in the contaminated foods or food products (Doulgeraki and Nychas, 2013; Mohareb et al., 2015). Fresh milk, fish, meat, and other items that are kept aerobically at low temperatures are common cold samples that

include *Pseudomonas* spp. The development of *Pseudomonas* spp. is the cause of off-flavours, off-colours, and slime formation seen in meat and its derivatives (Stellato *et al.*, 2017). Therefore, *Pseudomonas* spp. are frequently linked to poor quality food items (Molina *et al.*, 2013).

P. fluorescens frequently contaminates a wide variety of foods, and exhibits a broad range of growth temperatures. Previous studies found that they tend to contaminate cooked and uncooked food products stored at refrigeration temperature. Chicken flesh that has been held in an aerobic environment deteriorates due to the production of *P. fluorescens* biosurfactants (Mellor et al., 2011). However, studies have shown that certain P. fluorescens strains were capable of surviving in 100% carbon dioxide-packed tofu (Stoops et al., 2012). P. fluorescens was also found in packed, ready-to-eat vegetables, according to an Italian study (Caldera and Franzetti, 2014). A number of factors, such as the raw vegetable quality, processing methods, packaging design, and storage temperature influence the microbial composition of the finished product. P. fluorescens is also crucially associated with the contamination in milk and dairy products. The post-pasteurisation contamination with P. fluorescens in high temperature, short timepasteurised (HTST) milk remains a matter of concern, as it results in processor defects like reduced flavour acceptance level, altered coagulation texture, and the development of a fruity fermented milk characteristic (Reichler et al., 2018). P. fluorescens is commonly found as a contaminant in bulk milk tanks in Italy, demonstrating lipolytic, proteolytic, and lecithin activity (Decimo et al., 2014). P. fluorescens accelerates the breakdown of goat, cow, and buffalo milk mainly due to its proteolytic activity at different temperatures (Scatamburlo et al., 2015; Al-Rodhan and Nasear, 2016).

Andreani et al. (2015) revealed that mozzarella cheese was found with P. fluorescens that was associated with a particular spoilage occurrence. The iodine compound produced by P. fluorescens was determined as a substance responsible for the blue colour in this contaminated mozzarella cheese (Caputo et al., 2015). In a paper published by Belak et al. (2011), Pseudomonas spp. such as P. fragi, P. lundensis, P. putida, and P. fluorescens were recognised as significant psychrotrophic bacteria responsible for meat spoilage. Extensive research has focused on the proteases of these bacteria, demonstrating their involvement in producing

volatile organic compounds that contribute to the deterioration of meat quality (Ercolini *et al.*, 2009).

Pseudomonas spp. are frequently dominant and persistent in foods and on food processing surfaces due to their ability to form biofilms, which increase their resistance to adverse conditions such as antimicrobial treatments (Moretro and Langsrud, 2017; Quintieri et al., 2019). Antibiotic-resistant Pseudomonas spp. have been reported to contaminate chicken and other meat products (Amos et al., 2015; Wong et al., 2015), as well as milk and other dairy products (Quintieri et al., 2019; Meng et al., 2020) and vegetables (Estepa et al., 2015), which suggested that cross-contamination might have occurred which caused organoleptic spoilage by producing unwanted volatile metabolites (Ercolini et al., 2010).

Pseudomonas spp., especially P. fluorescens and P. aeruginosa, are two of the most crucial bacteria causing spoilage of refrigerated food products because they actively secrete protease and lipase enzymes during pre-processing storage, even in chilled conditions or in high temperature treatments (Meliani and Bensoltane, 2015), and they have a strong ability to survive in the post-processing line, causing degradation in terms of appearance and sensory properties, hence reducing the shelf life and level of consumer acceptance of chilled and refrigerator dependent products. Therefore, it is crucial to understand the characteristics of these two important Pseudomonas spp. in food to improve quality, safety, and shelf life of poultry products.

Pseudomonas fluorescens

Characteristics and contamination in poultry

P. fluorescens is a predominant member of the Pseudomonas genus, and often discovered as spoilage species and crucial contaminant in various chilled food groups. This is due to its natural ability to produce heat stable hydrolytic enzymes although subjected to high temperature treatment and retain their enzymatic activities during cold storage (Quigley et al., 2013; Machado et al., 2017). P. fluorescens was found in chilled chicken drumstick samples, suggesting that this species could potentially cause the poultry industry's products to spoil (Can, 2022). This was consistent with the study by Morales et al. (2016) who found P. fluorescens in chicken breast meat, and also found that it exhibited both lipolytic and proteolytic activities.

P. fluorescens is also involved in nosocomial infections and spoilage of different types of food

largely due to the presence of extracellular proteases, lipases, and also lecithinases that have heat stable characteristics, enabling this bacterium to survive well along thermal processing environments (Sillankorva *et al.*, 2008; Rossignol *et al.*, 2009). Previous researchers on fresh meat have shown that various strains within the same species can exhibit varying behaviours under identical food matrix and storage conditions. Consequently, distinct biotypes may exhibit distinct metabolic patterns that influence the activities linked to food spoilage, and ultimately dictate the likelihood of food spoilage (Ercolini *et al.*, 2010; Casaburi *et al.*, 2011; 2014).

Concerns about pathogenic microorganisms in meat or meat products have risen in recent years, even though there have been efforts to enhance the distribution of sanitary meat products (Bae *et al.*, 2010). During processing, contamination commonly occurs, especially when meat comes into contact with equipment such as saws, belts, and grinders in slaughterhouses (Jay, 1992). It can also arise from food handlers' hands and knives, as well as from exposure to contaminated water. According to Stellato *et al.* (2017), *P. fluorescens* was discovered to be the most common species in settings related to the meat industry.

Enzymes produced and their roles in food spoilage

The release of fatty and amino acids due to lipase or protease enzymes produced by P. fluorescens causes rancidity, off-flavours, and offodours before entering the later phase which is generally characterised by the development of extracellular slime and coloured growth (Martins et al., 2015). Triacylglycerol hydrolases, or lipases, catalyse the breakdown of fat molecules in foods, releasing unsaturated glycerol and fatty acids in the process (Andreani, 2016). It has been reported that rancid, free short-chain unsaturated fats contribute to unpleasant flavours, whereas bitter, frothy, or dirty flavours associated with medium-chain unsaturated fats (Samaržija et al., 2012). According to a number of studies (Woods et al., 2001; Rajmohan et al., 2002), lipolytic activity is more prominent at refrigeration temperatures. The AprX gene has been identified as the unique protease linked to food degradation in a number of Pseudomonas spp. strains (Woods et al., 2001). Two genes responsible for the production of exoenzymes are the AprX and LipM genes as shown in Table 1.

Type of gene	Target gene	Function	Reference
Flagellin	adnA	- Biofilm formation related gene. - Flagellar synthesis.	Xu et al. (2017)
Alkaline metalloprotease	aprX	 Specific gene for enzyme protease secretion. Causes degradation of extracellular protein to form grey colour and bitter flavour especially in milk. 	Wong et al. (2023)
Flagellin	fliC	- Biofilm formation related gene.	Xu et al. (2017)
Lipase	lipM	 Specific gene for enzyme lipase secretion. Hydrolyses fat to induce lipid deterioration, and produces bitter, foamy, and unclean flavour. 	De Jonghe <i>et al.</i> (2011); Machado <i>et al.</i> (2017); Wong <i>et al.</i> (2023)

Table 1. List of target genes of *P. fluorescens* detection and their functions.

Wong et al. (2023) stated that as a psychrotrophic bacterium, P. fluorescens relies on low temperatures and extended storage periods to proliferate and significantly compromise the quality of food samples during refrigerated storage. This bacterium produces two key heat-resistant enzymes, protease and lipase, which withstand pasteurisation or UHT treatment, and maintain their functionality throughout refrigeration (de Oliveira et al., 2015; Martins et al., 2015). Basically, the enzymatic activity of spoilage bacteria is influenced by the initial psychotropic levels and the temperature at which food samples are stored prior to processing (Odeyemi et al., 2020). Previous researchers have mentioned that P. fluorescens will start to secrete protease and lipase to cause spoilage when the bacterial population has reached or exceeded approximately 106 CFU/mL or g. When the bacterial population is beyond 10⁷ CFU/mL or g, the flavour deflection, especially in milk samples, is detected. Protease and lipase enzymes are typically synthesised during the early stationary growth phase or late logarithmic phase when cell density is high, where then a bitter and rancid smell is realised due to protein degradation and lipid breakdown (de Oliveira et al., 2015; Pazdzior, 2016).

Meng et al. (2017) highlighted that there was a strong correlation observed between extracellular peptidase activity on milk agar and the presence of aprX, as detected using PCR. This finding was in agreement with previous studies that reported and confirmed the role of aprX in the degradation of food products including milk (Dufour et al., 2008; Caldera et al., 2016). However, some isolates that are positive with the aprX gene exhibit no proteolytic activity across all storage temperatures, suggesting that aprX

could be suppressed during the degradation of milk proteins. In the *Pseudomonas* genus, the *aprX* gene typically plays a role in nutrient utilisation by degrading extracellular proteins; thus, *Pseudomonas* spp. are commonly linked to the deterioration of milk and other dairy products (Dufour *et al.*, 2008; Marchand *et al.*, 2009; Zhang *et al.*, 2009). Ercolini *et al.* (2010) added that compounds associated with protein breakdown were also found in non-proteolytic strains, probably originating from the breakdown of amino acids in meat or from enzymes naturally present in meat.

Biofilm formation

Pseudomonas spp. are frequently found bacteria in the food industry due to their capacity to produce biofilms, and adapt to a variety of environmental conditions. Pseudomonas spp. that produce biofilms are known to exist in food processing environments, and pose a threat to human health due to the biofilms production. These biofilms are encased in a self-produced exopolysaccharide matrix which consists of intricately structured microbial communities. Complexity, long production cycles, and nutrient availability in food processing lines that have large surface areas offer a perfect setting for the formation of biofilms (Yuan et al., 2021). When pathogenic bacteria are present in biofilms produced on surfaces that come into contact with food, they can become a persistent source of food contamination, resulting in both major sanitary issues and financial losses from food spoilage (Sofos and Geornaras, 2010). It is interesting to note that Pseudomonas spp. can generate biofilms that have the ability to capture and shield harmful microorganisms (Caraballo et al., 2020). Moreover, Pseudomonas

spp. are frequently found in multispecies biofilms containing pathogenic microorganisms (Quintieri *et al.*, 2021). *P. fluorescens* is a strong biofilm-producing bacterium that poses a risk of contamination in poultry plants (Merino *et al.*, 2024). Besides, it is also thought to enhance the growth and proliferation of other pathogens (Puga *et al.*, 2018; Maggio *et al.*, 2021).

Many foodborne microorganisms employ biofilm formation as a common survival strategy, distinct from their planktonic counterparts. Biofilms are recognised as a significant cause of bacterial cross-contamination in food processing areas (Maifreni et al., 2015). Pseudomonas species, especially P. fluorescens, are often involved in food spoilage, notably affecting dairy, poultry, and fresh produce. Ge et al. (2017) reported that the spoilage characteristics of P. fluorescens have been extensively studied across various products. P. fluorescens isolates from spoiled chicken meat have formed biofilm and showed an increasing attachment ability on stainless steel plates after 5 h of exposure (Wang et al. 2018). Dagang et al. (2016) indicated that P. fluorescens formed a strong biofilm by containing a high cell titre of 9.5 log/cm² cells, which was in agreement with another study that found out that the ability of P. fluorescens to form biofilms was greater than that of many other bacterial species, specifically foodborne pathogens, which frequently produced a cell number of less than 7 log/cm² cells during their biofilm formation (Yang et al., 2016).

According to Xu et al. (2017), 83.3% of 42 P. fluorescens strains had the adnA gene, and all of the strains with this gene were able to form biofilm under cultivation conditions of either 30 or 4°C. These conditions suggest that the adnA gene plays an important role in P. fluorescens biofilm formation (Table 1). Furthermore, it has been shown that the AdnA gene regulates both flagella-driven motility and surface adhesion in P. fluorescens (Mastropaolo et al., 2012). This may imply that the adnA gene's phylogenetic tree splits P. fluorescens into four groups based on their ability to adhere to biofilms. Therefore, the adnA gene is a useful target for both classifying P. fluorescens into distinct subgroups, and identifying P. fluorescens that is capable of generating biofilms (Xu et al., 2017).

In *P. fluorescens*, the *fliC* gene, which codes for flagella production, is controlled by *AdnA* (Table 1). The inactivation of the *fliC* gene prevents the mutant from forming biofilm, indicating the

significance of the *fliC* gene for *P. fluorescens* biofilm formation (Mastropaolo *et al.*, 2012). Redondo-Nieto *et al.* (2008) identified 15 *P. fluorescens* strains that had the *fliC* gene, and 12 of those also had the *adnA* gene. The *adnA* gene may be more crucial for *P. fluorescens* to create biofilm than the *fliC* gene. Indeed, the regulation mechanisms governing flagellar synthesis varied between strains, and beyond core genes, *P. fluorescens* exhibits quite complex flagellar synthesis regulation (Mastropaolo *et al.*, 2012). According to Robleto *et al.* (2003), flagella are crucial but not required for *P. fluorescens* biofilm production; hence it is not surprising that there were strains with only the *adnA* gene that were also able to generate biofilm.

A number of earlier research studies reported no noticeable difference in the capacity to generate biofilms between strains carrying either one or both genes (fliC or adnA, or both). P. fluorescens ability to form biofilms depends on several factors which include nutrient availability (Aswathanarayan and Vittal, 2014), growing conditions (Rossi et al., 2016), and surface materials (Marchand et al., 2012). However, the temperature of incubation appeared to have a greater impact. P. fluorescens was more likely to develop biofilm at lower temperatures; but, at 30°C, it was more capable of forming biofilm with more adhesion.

Antibiotic resistance

Heir *et al.* (2021) highlighted that *P. fluorescens* strains isolated from chicken meat showed varying resistance rates towards antibiotics, where most of the isolates were resistant to aztreonam (72.6%), colistin (30.2%), imipenem (25.6%), and meropenem (12.6%); none of the isolates exhibited resistance to aminoglycosides such as amikacin, gentamicin, and tobramycin, whereas only 2.3% were resistant to the fluoroquinolone ciprofloxacin. The presence of resistance to one or more antibiotics and known resistance genes was observed in these *P. fluorescens* isolates from chicken meat, indicating there was significant variability in antibiotic resistance profiles.

Other than that, Shabana *et al.* (2022) revealed that all *P. fluorescens* isolate strains were resistant to piperacillin (100%), followed by ceftazidime (29.7%) and cefepime (25.8%). However, the strains were found to be highly sensitive to cefotaxime (74.2%), followed by ceftriaxone and levofloxacin (70.3% each). In addition, *P. fluorescens* showed substantial

resistance to benzylpenicillin, first and second generation cephalosporins, lipoglycopeptides, glycopeptides, fusidic acid, macrolides, streptogramins, lincosamides, rifampicin, and oxazolidinones (EUCAST, 2022).

Despite poultry industries using antibiotics as a agent in the growth of spoilage microorganisms, aquatic products also showed huge resistance rate towards antibiotics. El-Sherifa et al. (2023) demonstrated that P. fluorescens harboured the highest rates of resistance to nalidixic acid (100%),streptomycin (100%),erythromycin (91.7%), penicillin G (79.2%), and cephalothin (75%). Thomassen et al. (2022) examined antibiotic resistance among *Pseudomonas* spp. isolates from a salmon-processing plant, where the majority of the isolates were P. fluorescens and highly resistant to ampicillin, amoxicillin, and cefotaxime.

The emergence of antibiotic resistance has led to the ineffectiveness of conventional antibiotics, and increased the failure rate for infection treatment, ultimately increasing the mortality rates associated with common infectious diseases (Sabeq et al., 2022). Thomassen et al. (2022) highlighted that P. fluorescens showed a multidrug resistance (MDR) pattern. El-Sherifa et al. (2023) reported that three out of 24 P. fluorescens isolates showed resistance to about 13 - 14 types of antibiotics belonging to seven antimicrobial classes, and five isolates showed resistance to 10 to 12 antibiotics belonging to six antimicrobial classes. Shabana et al. (2022) stated that P. fluorescens strains are considered as MDR microorganisms if they are resistant to more than two antibiotic classes. The wide growth of MDR microorganisms in the food chain poses a major food safety concern.

Pseudomonas aeruginosa Characteristics and contamination in poultry

P. aeruginosa is a foodborne microorganism and opportunistic human pathogen extensively distributed in food and the environment (Gu et al., 2016). It is usually present in environmental sources, including soil and water. It can also be found on vegetables, fruits, and meat. Meat storage under aerobic conditions allows for P. aeruginosa growth and proliferation even in different temperatures (Neto et al., 2012). It can easily develop in milk, fish, meat, and dairy samples stored aerobically at low temperatures. The growth of the bacterium is

responsible for off-flavours, pigmentation, slime, and malodour production in meat and derived products (Stellato *et al.*, 2017).

Fresh meat available in the market has a higher chance of containing *P. aeruginosa* possibly due to the exposure during handling, idle time prior to processing and cleaning, or maintenance processes involving contaminated water. Numerous incidents of food product recalls, foodborne outbreaks, and economic losses due to food spoilage have been strongly linked to the occurrence of crosscontamination and recontamination. These incidences primarily involved inadequate hygiene practices, contaminated processing equipment, or insufficient storage conditions (Carrasco *et al.*, 2012).

Pseudomonas infections in poultry industries are very crucial because they can rapidly spread among poultry flocks, leading to increased mortality across their different age groups (Shukla and Mishra, 2015). P. aeruginosa infections in chicken farming primarily occur via skin wounds, contamination of vaccines, egg dipping, and contamination of needles prior to injection. Chickens can often have skin injuries due to various reasons such as fighting and environmental hazards, where the wounds can be an entry point for *P. aeruginosa* into the chicken's body. Basically, in poultry industries, vaccination is a significant practice to prevent any infections, and if there is any lack of hygiene conditions during vaccination such as needles used for injections not being sterile or reuse of needles among the poultry flocks may lead to the contamination microorganisms. Moreover, the diseases could spread from infected poultry flocks to vulnerable ones nearby due to inadequate hygiene practices, indicating chickens of any age can have high chances of being contaminated with P. aeruginosa, where young chicks are commonly the most prone to the infection (Saad et al., 2017).

Enzyme produced and role in food spoilage

Similar to *P. fluorescens*, *P. aeruginosa* is also a psychotropic bacterium that has the possibility to cause food deterioration during cold storage due to its ability to survive in low temperatures. Besides, it can compete with other types of spoilage microorganisms (Wong *et al.*, 2023). *P. aeruginosa* has also been found in diverse food types including raw milk (Garedew *et al.*, 2012) and raw vegetables (Ruiz-Roldan *et al.*, 2021). Thus, the contamination of

P. aeruginosa food products has been identified as a potential source of nosocomial infections in human after consumption.

It is challenging to totally prevent the organoleptic deterioration of meat caused by microbiological consumption of meat components like sugars and free amino acids, and the generation of undesirable volatile metabolites, even in coldstored meat (Goncalves et al., 2016). preservation effect of low temperature may be diminished by psychrotrophic bacteria performing these activities at low temperatures (Ercolini et al., 2009). By altering their cytoplasmic membrane, and increasing the amounts of unsaturated fatty acids, these bacteria are able to survive at low temperatures. This keeps the membrane semifluid, which facilitates the transfer of nutrients and enzymes (Madigan and Martinko, 2006). Taking into consideration the quality of the meat and public health, one of the issues facing meat manufacturers is their capacity to develop at low temperatures.

Biofilm formation

P. aeruginosa is a crucial biofilm-forming species, and also a perspective microorganism for the biofilm investigations. Biofilm formation has been suggested as a bacterial survival strategy in adverse environments (Davies, 2003; Olsen, 2015; Moradali et al., 2017). Extracellular polymeric substances (EPSs) are a hydrated polymeric matrix that surrounds and supports living bacteria within biofilms. Environmental factors and bacterial species determine the physicochemical characteristics and composition of EPSs (Flemming and Wingender, 2010).

It has been well established that surfaces of equipment and utensils can facilitate the adhesion, growth, and proliferation of microorganisms, leading to the potential for spoilage and contamination by pathogenic bacteria like *P. fluorescens* and *P. aeruginosa*. These organisms are known for their involvement in adherence processes and the formation of biofilms.

P. aeruginosa is known to produce biofilms, which are regarded to be an important factor in the strain's pathogenicity and antibiotic resistance. A study published by Liang et al. (2023) showed this attribute of the bacterium, and revealed that almost 53% of the P. aeruginosa isolates showed MDR. According to Xu et al. (2021; 2022), biofilms are complex, interconnected communities of bacteria that

can stick to the surfaces of industrial machinery, food, medical equipment, and plumbing in homes. The most crucial elements in the creation of the complex biofilm matrix, which shields bacteria from hostile surroundings, antimicrobial agents, and host immunological responses are EPSs, proteins, lipids, and eDNA (Li *et al.*, 2023; Wen *et al.* 2023).

Antibiotic resistance

P. aeruginosa is expected to show resistance to ampicillin and amoxicillin, along with their combinations with lactamase inhibitors, ceftriaxone, cefotaxime, chloramphenicol, ertapenem, selected aminoglycosides such as kanamycin and neomycin, tetracycline, trimethoprim, and tigecycline (EUCAST, 2022). This was corroborated by several studies, including Rezaloo et al. (2022). P. aeruginosa isolated from meat products showed high ampicillin (89.65%), resistance to penicillin (86.20%), tetracycline (82.75%), cefoxitin (37.93%), gentamicin (34.48%), and clindamycin (31.03%). Besides, a study conducted by Poursina et al. (2023) also reported a similar pattern of antibiotic resistance rate, where P. aeruginosa obtained from raw meat samples had high resistance pattern to penicillin ampicillin (85.10%), (87.23%),tetracycline (85.10%), gentamicin (65.95%), and trimethoprim (57.44%).

The inherent resistance of *P. aeruginosa* towards chloramphenicol, tetracyclines, and trimethoprim can be due to the presence of MDR on the cell surface, and active efflux systems (Langendonk *et al.*, 2021). Benie *et al.* (2019) discovered that *P. aeruginosa* isolates from raw food samples were resistant to aztreonam, ticarcillin, and ciprofloxacin. Bhuiya *et al.* (2018) reported that a total of 100% of *P. aeruginosa* isolated from frozen meat and chicken nuggets showed resistance to ampicillin, penicillin, cefixime, and cefpodoxime, and 30% of isolates were not susceptible to cefotaxime.

Algammal *et al.* (2023) highlighted that the primary factors contributing to the emergence of MDR strains are the extensive utilisation of antibiotics in poultry farming and processing sectors, as well as the ability of *P. aeruginosa* to acquire resistance genes from other highly resistant bacteria. Moreover, antimicrobial resistance in *P. aeruginosa* primarily arises from acquired and inherent mechanisms, characterised by the outer membrane's low permeability, and the presence of resistance

genes. Consequently, accurate implementation of susceptibility testing and thorough investigation into the presence of MDR pathogens are essential for selecting the most optimal antibiotics (Makharita *et al.*, 2020; Langaee *et al.*, 2000). The presence of MDR *P. aeruginosa* strains highlights the importance of consistently performing sensitivity tests, and promoting limited antibiotic usage in both the poultry farming industry and the healthcare sector (Algammal *et al.*, 2023).

Virulence genes

P. aeruginosa is indeed notable for possessing a variety of virulence factors that contribute to its pathogenicity as shown in Table 2. These include both cell-mediated and secreted virulence

determinants (Algammal et al., 2023). Cell-mediated virulence determinants basically involve structures and mechanisms that directly interact with host cells or tissues. These determinants in P. aeruginosa may include lipopolysaccharide (LPS), pili, and flagella that facilitate adherence to host cells, and movement within host tissues (Mesquita et al., 2013). Besides, secreted virulence determinants may refer to toxicity and enzymatic reactions produced by microorganisms, and secreted into the desired environment or directly to the host tissues such as exotoxins (ExoS, ExoU, ExoT, and ExoY), elastase, and protease enzymes that degrade host tissues and proteins, aiming for immunology evasion (Fazeli and Momtaz, 2014; Jurado-Martín et al., 2021).

Table 2. List of target genes of *P. aeruginosa* detection and their functions.

Type of gene	Target gene	Function	Reference
Alginate	algD	- Biofilm formation related gene.	Mohamed et al. (2022)
	algU	- Biofilm formation related gene.	Mohamed et al. (2022)
Exoenzyme	exoS	- Plays bifunctional toxin activity that disrupts cell to cell adhesion.	Horna and Ruiz (2021)
		 The longest <i>P. aeruginosa</i> effector. Has relevant cytotoxic power, and is considered the main driver of the cytotoxic phenotype. Exhibits lysophospholipase, and acts as a lipase targeting neutral lipids. Considered as exclusive gene cause human acute infection. 	Horna and Ruiz (2021)
	lasA	- Protease production marker gene.	Aslantas et al. (2022)
Elastase	lasB	 - Major virulence factor of protease cleavage activity. - Affects biofilm formation. - Disrupts epithelial junctions. 	Behzadi et al. (2021)
Phenazine operon	phzH	- Secretes the precursor proteins responsible for intracellular oxidative effects.	Higgins <i>et al.</i> (2018)
	phzM		
	phzS		
Phospholipase	PlcH	- Haemolytic gene.	Aslantas et al. (2022)
	plcN	- Non-haemolytic gene.	Aslantas et al. (2022)
Other protein (Exotoxin A)	toxA	 - Pathogenic related gene. - Responsible for the synthesis of exotoxin A. - Key virulence determinant of <i>P. aeruginosa</i>. 	Liang <i>et al.</i> (2023); Ertugrul <i>et al.</i> (2017); Algammal <i>et al.</i> (2023)
Other protein (Lipoprotein)	oprL	Species specific identification gene.A reliable indicator of <i>P. aeruginosa</i> infection.	Ghazaei (2023); Wessel <i>et al.</i> (2013)

Another types of virulence factors of P. aeruginosa responsible for the pathogenesis of diseases and related infections include phenazine operon genes (phzH, phzM, and phzS) that secrete the precursor proteins to encode three phenazine compounds responsible for the intracellular oxidative effects (Higgins et al., 2018). Furthermore, the elastase gene (lasA and lasB), haemolytic and nonhaemolytic phospholipase C (plcH and plcN), and alginate-encoded genes (algD and algU) are also other essential virulence factors of P. aeruginosa (Rocha et al., 2019; Veetilvalappil et al., 2022). P. aeruginosa strains containing these genes can easily attach to epithelial cells, and cause invasion which results in inflammation and injury (Moissenet and Khedher, 2011).

The exoU gene can rapidly destroy the membrane of host cells, and consequently leads to severe lung injury, proinflammatory response, sepsis, and mortality (Jurado-Martin $et\ al.$, 2021). The most abundant protease elastase B (lasB) is recognised as a major virulence factor due to its protein cleavage activity that could interfere with bacterial clearance, disrupt epithelial junctions, and affect biofilm formation (Behzadi $et\ al.$, 2021).

Control methods

Microorganisms or their by-products are utilised to eradicate unwanted microorganisms in food, thereby enhancing food safety and prolonging shelf life. Several studies have documented the use of microorganisms like bacteria, fungi, actinomycetes, and algae, along with their antimicrobial metabolites as biopreservatives (Marrez and Sultan, 2016; Sultan et al., 2016; Marrez et al., 2017). Certain bacterial strains have the capability to generate antagonistic substances that serve as antimicrobial and biocontrol agents targeting microorganisms in food. In this regard, *Pseudomonas* spp. have been highlighted as one of the predominant species employed in the biocontrol of foodborne pathogenic bacteria and fungi producing mycotoxins (Sabry et al., 2016).

Marrez *et al.* (2017) stated that the major control methods to eliminate the foodborne bacteria are cooking and chilling. Many cases of foodborne infections can be minimised by preventing crosscontamination. This involves following good manufacturing practices (GMP) and good hygienic practices (GHP), such as storing raw and cooked foods separately, and consistently washing hands

before and after handling raw ingredients. These essential hygiene measures should be observed throughout food production, storage, transportation, and preparation to reduce the proliferation and transmission of harmful pathogens (Malhotra et al., 2015). There are diverse approaches for preserving food, including traditional techniques like drying, heating, freezing, fermentation, and salting, as well as contemporary methods such as biopreservatives and active antimicrobial packaging systems (Sung et al., 2013). The activity of removing water from food during drying will be able to minimise the growth of microorganisms including *Pseudomonas* spp. since they normally require moisture to grow and reproduce. Besides, cooking the food such as chicken at an adequate temperature can Pseudomonas spp. by denaturing their proteins and disrupting their cellular structure. Since Pseudomonas spp. can survive in freezing conditions, lowering the temperature below their optimal growth range may become a crucial way to inhibit their growth and thereby extend the shelf life of frozen meat and other foods. To date, biopreservatives have been widely established worldwide. For example, the use of organic acid such as acetic acid in vinegar can create an acidic environment that inhibits the growth of Pseudomonas spp. and other spoilage organisms. Furthermore, modified atmosphere packaging that involves replacing the atmosphere around a food product with low oxygen levels and high carbon dioxide levels can reduce the chances for the growth of aerobic microorganisms like Pseudomonas spp. (Darwesh et al., 2018).

Using synthetic preservatives is a common method to prevent food spoilage, and inhibit the growth of pathogenic microorganisms. The common synthetic preservatives include sulphites that are used to prevent the browning of processed meat, and nitrites that are primarily used as colour preservatives in cured meats. However, these chemicals raise high concerns due to human health, and can contribute to microorganisms developing resistance (Liu *et al.*, 2021).

Detection methods Culture-based method

The oldest approach for determining whether contaminated foods contain foodborne pathogens is the culture-based method. It is a progressive process

of cultural enrichment that includes strain typing, confirmation, and selective and differential plating (Kim and Kim, 2021). It can be separated into two groups: pre-enrichment, which restores damaged cells to their original states, raises the target pathogen concentration in food samples, and rehydrates cells from dehydrated foods in selective enrichment that increases the concentration of a certain pathogen in food samples (Dwivedi and Jaykus, 2011). The culture condition is influenced by the atmosphere, temperature, incubation period, and different nutrients in the media (Lagier et al., 2015). However, using a differential medium to identify the targeted pathogenic bacteria, foodborne pathogens can be detected in a selective and distinctive manner using culture-based methods that restrict the growth of unneeded microbes.

Similar to most other strains of *Pseudomonas*, P. fluorescens complex grows best in a rich, peptidecontaining medium with an energy source of 0.1 to 1.0% (w/v) (Moore et al., 2006). Due to increased production of *P. fluorescens* siderophores, the natural fluorescence produced by this bacterium can be detected using selective media that are weak in iron. The selective pigment-enhancing media include King's A and B media (Taguett et al., 2015), Pseudosel agar medium, and Pseudomonas agar F medium. In addition, these media include other substances like cetrimide, magnesium, and potassium that help the P. fluorescens grow more selectively. Specifically, cetrimide assists in preventing the growth of non-Pseudomonas microbial flora, and permits P. aeruginosa to produce sufficient amounts of pigment (Milligan et al., 2023).

According to Algammal *et al.* (2023), the recovered *P. aeruginosa* isolates' colonies on cetrimide agar were big, irregular, smelled like fruit, and spread a yellowish-green fluorescent pigment. Furthermore, on McConkey agar, the isolated isolates showed smooth, pale (non-lactose fermenter), and flat colonies. Biochemical assays for oxidase, mannitol fermentation, gelatine hydrolysis, catalase, citrate utilisation, and nitrate reduction revealed that the *P. aeruginosa* isolates under test were positive. Additionally, the isolates of *P. aeruginosa* that were recovered were negative for the Voges-Proskauer, urease, indole, methyl red, and hydrogen sulphate (H₂S) generation tests.

Romalho *et al.* (2002) evaluated the survival of *P. aeruginosa* isolates on *Pseudomonas* agar base with the addition of several types of supplements such

as Cefsulodin-Irgasan-Novobiocin (CN), cetrimide, nalidixic acid, and ferrous sulphate (FeSO₄). While the addition of FeSO₄ did not speed up *P. aeruginosa*'s recovery, it yielded colonies a distinctive dark brown colour that made them easily distinguishable from other species that could grow at 42°C.

Molecular method
Polymerase chain reaction (PCR) assay

Currently, the conventional culture method remains the standard approach for detecting Pseudomonas spp. in foods despite being timeconsuming, and labour- and cost-intensive (Zhou et al., 2020; Chon et al., 2021). Isolating and identifying P. aeruginosa using conventional procedures takes a long time, especially when there are a lot of samples (Gharieb et al., 2022). Furthermore, P. aeruginosa is identified using the conventional culture method based on the green pigment that the strain produces. This approach will result in incorrect assessments during the actual inspection. For example, certain P. aeruginosa strains are not pigment producers, which causes inspections to be overlooked. Another scenario is when P. fluorescens and P. aeruginosa produce the same pigment, rendering differentiation impossible and leading to false positives (Schroth et al., 2018; Junaid et al., 2021). Researchers have been working for a while to develop a quick and accurate way to identify P. aeruginosa, but each approach has advantages and disadvantages (Tang et al., 2017).

As earlier mentioned, using traditional microbiology methods in the detection of P. aeruginosa is extensively time- and labourconsuming, where in most circumstances the finished goods would possibly be moved out from the factory before releasing results of total P. aeruginosa colony count. This condition eventually reduces the chance of appropriate and successful product release systems as written in pre-requisite program by that food manufacturing company. Thus, in order to monitor the contamination status and provide a scientific foundation for the prevention and control of foodborne P. aeruginosa, it is important to create quick, accurate, straightforward, and efficient diagnostic techniques or tools for the detection of P. aeruginosa in food (Wang et al., 2022). Despite traditional detection methods for Pseudomonas spp., molecular techniques are increasingly favoured for diagnosing Pseudomonas down to the species level, owing to their simplicity, speed, and reliability (Bej

et al., 1991). A common PCR assay has been widely utilised as a specific and rapid method for the detection of *P. aeruginosa* in a variety of foods and processing areas due to its high specificity, huge sensitivity, less time consuming, and simple operation (Wang et al., 2022).

In the beginning of PCR application, the specific target gene *oprL* has been used precisely as a marker for the detection of *P. aeruginosa* in various food samples (Wang *et al.*, 2022). However, with the increasing of new strains globally, some of the earlier target genes are unable to detect new threats. Thus, it is necessary to allow researchers to detect specifically *P. aeruginosa* using other variety of virulence genes. This was in agreement with studies conducted by Taee *et al.* (2014), Heidari *et al.* (2018), Khademi *et al.* (2021), and Wang *et al.* (2022) which identified and differentiated *P. aeruginosa* from other *Pseudomonas* spp. using several target genes including the *algD* forward and reverse sequences.

Several researchers agreed that PCR with gel electrophoresis evaluation are identification methods with consistency, able to provide a detailed outcome of specific bacterial communities, and determine the contamination sources (Aslam et al., 2003; Carraro et al., 2011). Hummel and Unger (1998) developed the first PCR technique that used the exotoxin A gene to precisely identify P. aeruginosa. They also evaluated the method's suitability for quickly identifying P. aeruginosa in patients on mechanical ventilation. The findings demonstrated that the exotoxin A gene-based PCR method had superior sensitivity because it identified 57 positive samples out of 364 total samples, while the traditional culture method only found 36 positive samples. As P. aeruginosa PCR assays continue to advance, more and more specific genes, including gyrB, algD, and oprL are being identified. While specificity is crucial for the success of traditional PCR, it is also the primary reason for PCR detection failures. As a result, numerous studies have looked into the gene specificity of various P. aeruginosa strains. De Vos et al. (1997), for instance, looked at the oprL gene's specificity in P. aeruginosa detection.

Isothermal amplification (LAMP) assay

The drawbacks of traditional PCR techniques, which need thermocycling for amplification, have been addressed by isothermal amplification techniques. Rapid nucleic acid molecule amplification at a constant temperature is made

possible by isothermal amplification, which offers a higher sensitivity and requires less equipment (Dhama et al., 2014). Based on several recent studies, P. aeruginosa can be found using the loop-mediated isothermal amplification (LAMP) approach. Goto et al. (2010) created a LAMP assay that selectively targeted the oprL gene of P. aeruginosa. It was based on a hydroxynaphthol blue (HNB) colorimetric assay. The outcomes demonstrated that compared to traditional PCR, the LAMP assay had > 10-fold higher sensitivity and 100% specificity for the serogroup. Furthermore, the assay only took two hours to complete from DNA extraction to detection.

Conclusion

The challenges posed by *P. fluorescens and P.* aeruginosa in poultry and poultry products are significant owing to their great adaptability, psychrophilic nature, growth potential, and multidrug resistance. Rapid growth of P. fluorescens at refrigeration temperature that produces exoenzymes protease and lipase significantly changes the physicochemical properties of poultry products. The persistence of spoilage microorganisms in cold storage conditions, facilitated by enzymatic activity and biofilm formation, emphasises the importance of food hygiene standards and effective protocols throughout food storage and handling. A high number of P. aeruginosa poses risk of human infection should the poultry meat be undercooked, leaving sufficient numbers to cause disease. Therefore, effective control and detection methods are important to ensure poultry product safety for consumers.

Acknowledgement

The present work was financially supported by the Ministry of Higher Education (MOHE), Malaysia through the Fundamental Research Grant Scheme (FRGS/1/2023/WAB04/UNISZA/02/5).

References

Adams, M. R. and Moss, M. O. 2008. Food Microbiology. 3rd ed. United Kingdom: The Royal Society of Chemistry.

Algammal, A. M., Eidaroos, N. H., Alfifi, K. J., Alatawy, M., Al-Harbi., A. I., Alanazi, Y. F., ... and El-Tarabili, R. M. 2023. *oprL* gene sequencing, resistance patterns, virulence

- genes, quorum sensing and antibiotic resistance genes of XDR *Pseudomonas aeruginosa* isolated from broiler chickens. Infection and Drug Resistance 16: 853-867.
- Al-Rodhan, A. M. and Nasear, H. A. 2016. PCR-based detection of *Pseudomonas fluorescens* in cows and buffalos raw milk. Basrah Journal of Veterinary Research 15(1): 194-208.
- Amos, G. C. A., Carter, A., Hawkey, P. M., Gaze, W.
 H. and Wellington, E. 2015. The hidden resistome of retail chicken meat. Journal of Global Antimicrobial Resistance 3: 44-46.
- Andreani, N. 2016. Into the blue: Spoilage phenotypes of *Pseudomonas fluorescens* in food matrices. Italy: University of Padova, PhD thesis.
- Andreani, N. A., Carraro, L., Martino, M. E., Fondi, M., Fasolato, L., Miotto, G., ... and Cardazzo, B. 2015. A genomic and transcriptomic approach to investigate the blue pigment phenotype in *Pseudomonas fluorescens*. International Journal of Food Microbiology 213: 88-98.
- Arslan, S., Eyi, A. and Ozdemir, F. 2011. Spoilage potentials and antimicrobial resistance of *Pseudomonas* spp. isolated from cheeses. Journal of Dairy Science 94: 5851-5856.
- Aslam, M., Nattress, F., Greer, G., Yost, C., Gill, C. and McMullen, L. 2003. Origin of contamination and genetic diversity of *Escherichia coli* in beef cattle. Applied and Environmental Microbiology 69: 2794-2799.
- Aslantas, O., Turkyilmaz, S., Keskin, O., Gullu-Yucetepe, A. and Buyukaltay, K. 2022. Molecular characterization of *Pseudomonas aeruginosa* isolated from clinical bovine mastitis cases. Kafkas Universitesi Veteriner Fakultesi Dergisi 8(6): 747-759.
- Aswathanarayan, J. B. and Vittal, R. R. 2014. Attachment and biofilm formation of *Pseudomonas fluorescens* PSD4 isolated from a dairy processing line. Food Science and Biotechnology 23(6): 1903-1910.
- Austin, B. and Austin, D. A. 2016. Pseudomonads. In Austin, B. and Austin, D. A. (eds). Bacterial Fish Pathogens, p. 475-498. Germany: Springer International Publishing.
- Bae, Y. Y., Kim, N. H., Kim, K. H., Kim, B. C. and Rhee, M. S. 2010. Supercritical carbon dioxide

- as a potential intervention for ground pork decontamination. Journal of Food Safety 31: 48-51.
- Baykal, H., Celik, D., Ulger, A. F., Vezir, S. and Gungor, O. 2022. Clinical features, risk factors, and antimicrobial resistance of *Pseudomonas putida* isolates. Medicine 101(48): 1-6.
- Behzadi, P., Baráth, Z. and Gajdács, M. 2021. It's not easy being green: A narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant *Pseudomonas aeruginosa*. Antibiotics 10(42): 1-29.
- Bej, A. K., Mahbubani, M. H., Dicesare, J. L. and Atlas, R. M. 1991. Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Applied and Environmental Microbiology 57(12): 3529-3534.
- Belak, A., Kovacs, M., Hermann, Z. S., Holczman, A. N., Marta, D., Stojakovic, S. C., ... and Maraz, A. 2011. Molecular analysis of poultry meat spoiling microbiota and heterogeneity of their proteolytic and lipolytic enzyme activities. Acta Alimentaria 40: 3-22.
- Benie, C. K. D., Dadie, A. T., Guessennd, N., N'gbesso-Kouadio, N. A., Kouame, N. D., N'golo, D. C., ... and Dossa, M. 2019. Characterization of virulence potential of *Pseudomonas aeruginosa* isolated from bovine meat, fresh fish, and smoked fish. European Journal of Microbiology and Immunology 7: 55-64.
- Bhuiya, M., Sarkar, M. K., Sohag, M. H., Ali, H., Roy, C. K., Akther, L. and Sarker, A. F. 2018. Enumerating antibiotic susceptibility patterns of *Pseudomonas aeruginosa* isolated from different sources in Dhaka City. The Open Microbiology Journal 12: 172-180.
- Bloomfield, S. J., Zomer, A. L., O'Grady, J., Kay, G. L., Wain, J., Janecko, N., ... and Mather, A. E. 2023. Determination and quantification of microbial communities and antimicrobial resistance on food through host DNA-depleted metagenomics. Food Microbiology 110: 1-12.
- Caldera, L. and Franzetti, L. 2014. Effect of storage temperature on the microbial composition of ready-to-use vegetables. Current Microbiology 68(2): 133-139.

- Caldera, L., Franzetti, L., Van Coillie, E., De Vos, P., Stragier, P., De Block, J. and Heyndrickx, M. 2016. Identification, enzymatic spoilage characterization and proteolytic activity quantification of *Pseudomonas* spp. isolated from different foods. Food Microbiology 54: 142-153.
- Can, H. Y. 2022. Investigation of *Pseudomonas* species in chicken drumstick samples. Kocatepe Veterinary Journal 15(2): 139-143.
- Caputo, L., Quintieri, L., Bianchi, D. M., Decastelli, L., Monaci, L., Visconti, A. and Baruzzi, F. 2015. Pepsin-digested bovine lactoferrin prevents mozzarella cheese blue discoloration caused by *Pseudomonas fluorescens*. Food Microbiology 46: 15-24.
- Caraballo, A., Gonzalez, M. I., Cuesta-Astroz, Y. and Torres, G. 2020. Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia. Brazilian Journal of Microbiology 51: 1259-1267.
- Carraro, L., Maifreni, M., Bartolomeoli, I., Martino, M. E., Novelli, E., Frigo, F., ... and Cardazzo, B. 2011. Comparison of culture-dependent and independent methods for bacterial community monitoring during Montasio cheese manufacturing. Research in Microbiology 162: 231-239.
- Carrasco, E., Morales-Rueda, A. and Garcia-Gimeno, R. M. 2012. Cross-contamination and recontamination by *Salmonella* in foods: A review. Food Research International 45: 545-556.
- Casaburi, A., De Filippis, F., Villani, F. and Ercolini, D. 2014. Activities of strains of *Brochothrix thermosphacta in vitro* and in meat. Food Research International 62: 366-374.
- Casaburi, A., Nasi, A., Ferrocino, I., Di Monaco, R., Mauriello, G., Villani, F. and Ercolini, D. 2011. Spoilage-related activity of *Carnobacterium maltaromaticum* strains in air-stored and vacuum-packed meat. Applied and Environmental Microbiology 77: 7382-7393.
- Cho, C. H. and Lee, S. B. 2018. Comparison of clinical characteristics and antibiotic susceptibility between *Pseudomonas aeruginosa* and *P. putida* keratitis at a tertiary referral center: A retrospective study. BMC Ophthalmology 18: 204.

- Chon, J., Jung, J. Y., Ahn, Y., Bae, D., Khan, S., Seo, K., ... and Sung, K. 2021. Detection of *Campylobacter jejuni* from fresh produce: Comparison of culture- and PCR-based techniques, and metagenomic approach for analyses of the microbiome before and after enrichment. Journal of Food Protection 84: 1704-1712.
- Dagang, W. W., Bowen, J., O'Keeffe, J., Robbins, P. T. and Zhang, Z. 2016. Adhesion of *Pseudomonas fluorescens* biofilms to glass, stainless steel and cellulose. Biotechnology Letters 38: 787-792.
- Darwesh, O. M., Sultan, Y. Y., Seif, M. M. and Marrez, D. A. 2018. Bioevaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicology Reports 5: 348-356.
- Davies, D. 2003. Understanding biofilm resistance to antibacterial agents. Nature Reviews Drug Discovery 2: 114-122.
- De Jonghe, V., Coorevits, A., Van Hoorde, K., Messens, W., Van Landschoot, A., De Vos, P. and Heyndrickx, M. 2011. Influence of storage conditions on the growth of *Pseudomonas* species in refrigerated raw milk. Applied and Environmental Microbiology 77: 460-470.
- De Oliveira, G. B., Favarin, L., Luchese, R. H. and McIntosh, D. 2015. Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology 46(2): 313-321.
- De Vos, D., Lim, A. J., Pirnay, J. P., Struelens, M., Vandenvelde, C., Duinslaeger, L., ... and Cornelis, P. 1997. Direct detection and identification of *Pseudomonas aeruginosa* in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, *oprI* and *oprL*. Journal of Clinical Microbiology 35: 1295-1299.
- Decimo, M., Morandi, S., Silvetti, T. and Brasca, M. 2014. Characterization of Gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. Journal of Food Science 79(10): 2081-2090.
- Dhama, K., Karthik, K., Chakraborty, S., Tiwari, R., Kapoor, S., Kumar, A. and Thomas, P. 2014. Loop-mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human

- pathogens: A review. Pakistan Journal of Biological Science 17: 151-166.
- Donnarumma, G., Buommino, E., Fusco, A., Paoletti, I., Auricchio, L. and Tufano, M. A. 2010. Effect of temperature on the shift of *Pseudomonas fluorescens* from an environmental microorganism to a potential human pathogen. International Journal of Immunopathology and Pharmacology 23: 227-234.
- Doulgeraki, A. I. and Nychas, G. J. E. 2013. Monitoring the succession of the biota grown on a selective medium for *Pseudomonads* during storage of minced beef with molecular-based methods. Food Microbiology 34: 62-69.
- Dufour, D., Nicodeme, M., Perrin, C., Driou, A., Brusseaux, E., Humbert, G., ... and Dary, A. 2008. Molecular typing of industrial strains of *Pseudomonas* spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them. International Journal of Food Microbiology 125: 188-196.
- Duman, M., Mulet, M., Altun, S., Saticioglu, I. B., Ozdemir, B., Ajmi, N., ... and Garcia-Valdes, E. 2021. The diversity of *Pseudomonas* species isolated from fish farms in Turkey. Aquaculture 535: 736-739.
- Dwivedi, H. P. and Jaykus, L. A. 2011. Detection of pathogens in foods: The current state-of-the-art and future directions. Critical Reviews in Microbiology 37(1): 40-63.
- El-Sherifa, M., Saad, S. M., Hamad, A. A. and Amin, R. A. 2023. Prevalence and antibiotic resistance patterns of *Aeromonas* and *Pseudomonas* species recovered from aquatic foods sold at the retail market in Egypt. Benha Veterinary Medical Journal 45: 146-151.
- Ercolini, D., Casaburi, A., Nasi, A., Ferrocino, I., Di Monaco, R., Ferranti, P., ... and Villani, F. 2010. Different molecular types of *Pseudomonas fragi* have the same overall behaviour as meat spoilers. International Journal of Food Microbiology 142: 120-131.
- Ercolini, D., Russo, F., Nasi, A., Ferranti, P. and Villani, F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential *in vitro* and in beef. Applied and Environmental Microbiology 75: 1990-2001.

- Ertugrul, B. M., Oryasin, E., Lipsky, B. A., Willke, A. and Bozdogan, B. 2017. Virulence genes *fliC, toxA* and *phzS* are common among *Pseudomonas aeruginosa* isolates from diabetic foot infections. Infectious Diseases 50(4): 273-279.
- Estepa, V., Rojo-Bezares, B., Torres, C. and Sáenz, Y. 2015. Genetic lineages and antimicrobial resistance in *Pseudomonas* spp. isolates recovered from food samples. Foodborne Pathogens and Disease 12: 486-491.
- European Committee on Antimicrobial Susceptibility
 Testing (EUCAST). 2022. Expected resistant
 phenotypes version 1.1. Retrieved from
 EUCAST website:
 https://www.eucast.org/expert_rules_and_
 expected phenotypes/expected phenotypes/
- Fazeli, N. and Momtaz, H. 2014. Virulence gene profiles of multidrug-resistant *Pseudomonas aeruginosa* isolated from Iranian hospital infections. Iranian Red Crescent Medical Journal 16(10): 1-10.
- Flemming, H. C. and Wingender, J. 2010. The biofilm matrix. Nature Reviews Microbiology 8(9): 623-633.
- Garedew, L., Berhanu, A., Mengesha, D. and Tsegay, G. 2012. Identification of Gram-negative bacteria from critical control points of raw and pasteurized cow milk consumed at Gondar town and its suburbs, Ethiopia. BMC Public Health 12: 1-7.
- Ge, Y., Zhu, J., Ye, X. and Yang, Y. 2017. Spoilage potential characterization of *Shewanella* and *Pseudomonas* isolated from spoiled large yellow croaker (*Pseudosciaena crocea*). Letters in Applied Microbiology 64: 86-93.
- Gharieb, R., Saad, M., Khedr, M., El Gohary, A. and Ibrahim, H. 2022. Occurrence, virulence, carbapenem resistance, susceptibility to disinfectants and public health hazard of *Pseudomonas aeruginosa* isolated from animals, humans and environment in intensive farms. Journal of Applied Microbiology 132: 256-267.
- Ghazaei, C. 2023. Molecular detection and identification of *oprl* and *lasb* genes isolated from *Pseudomonas aeruginosa*. Journal of Clinical Research in Paramedical Sciences 12(2): 1-7.

- Gomila, M., Pena, A., Mulet, M., Lalucat, J. and García-Valdés, E. 2015. Phylogenomics and systematics in *Pseudomonas*. Frontiers in Microbiology 6: 1-13.
- Goncalves, L. D. A., Piccoli, R. H., De Paula-Peres, A. and Saude, A. V. 2016. Predictive modeling of *Pseudomonas fluorescens* growth under different temperature and pH values. Brazilian Journal of Microbiology 48(2): 352-358.
- Goto, M., Shimada, K., Sato, A., Takahashi, E., Fukasawa, T., Takahashi, T., ... and Nomoto, A. 2010. Rapid detection of *Pseudomonas aeruginosa* in mouse feces by colorimetric loop-mediated isothermal amplification. Journal of Microbiological Methods 81: 247-252.
- Gram, L., Ravn, L., Rasch, M., Bruhn, J. B., Christensen, A. B. and Givskov, M., 2002. Food spoilage—interactions between food spoilage bacteria. International Journal of Food Microbiology 78: 79-97.
- Gu, X., Sun, Y., Tu, K., Dong, Q. and Pan, L. 2016. Predicting the growth situation of *Pseudomonas aeruginosa* on agar plates and meat stuffs using gas sensors. Scientific Reports 6(1): 1-12.
- Heidari, H., Hadadi, M., Sedigh Ebrahim-Saraie, H., Mirzaei, A., Taji, A., Hosseini, S. R. and Motamedifar, M. 2018. Characterization of virulence factors, antimicrobial resistance patterns and biofilm formation of *Pseudomonas aeruginosa* and *Staphylococcus* spp. strains isolated from corneal infection. Journal Français d'Ophtalmologie 41: 823-829.
- Heir, E., Moen, B., Asli, A. W., Sunde, M. and Langsrud, S. 2021. Antibiotic resistance and phylogeny of *Pseudomonas* spp. isolated over three decades from chicken meat in the Norwegian food chain. Microorganisms 9(2): 1-9.
- Higgins, S., Heeb, S., Rampioni, G., Fletcher, M. P., Williams, P. and Cámara, M. 2018. Differential regulation of the phenazine biosynthetic operons by quorum sensing in *Pseudomonas aeruginosa* PAO1-N. Frontiers in Cellular and Infection Microbiology 8: 252.
- Horna, G. and Ruiz, J. 2021. Type 3 secretion system of *Pseudomonas aeruginosa*. Microbiology Research 246: 1-17.
- Hummel, A. and Unger, G. 1998. Detection of *Pseudomonas aeruginosa* in bronchial and

- tracheal aspirates by PCR by amplification of the exotoxin a gene. International Journal of Hygiene and Environmental Medicine 201: 349-355.
- Iglewski, B. H. 1996. *Pseudomonas*. In Baron, S. (ed). Medical Microbiology, 4th ed. United States: University of Texas Medical Branch at Galveston.
- Jay, J. M. 1992. Microbiology food safety. Clinical Reviews in Food Science and Nutrition 31(3): 177-190.
- Junaid, K., Ejaz, H., Asim, I., Younas, S., Yasmeen, H., Abdalla, A. E., ... and Rehman, A. 2021. Heavy metal tolerance trend in extended-spectrum beta-lactamase encoding strains recovered from food samples. International Journal of Environmental Research and Public Health 18: 4718.
- Jurado-Martin, I., Sainz-Mejias, M. and McClean, S. 2021. *Pseudomonas aeruginosa*: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences 22: 3128.
- Khademi, F., Maarofi, K., Arzanlou, M., Dogaheh, H. P. and Sahebkar, A. 2021. Which missense mutations associated with DNA gyrase and topoisomerase IV are involved in *Pseudomonas aeruginosa* clinical isolates resistance to ciprofloxacin in Ardabil? Gene Reports 24: 1-6.
- Kim, S. O. and Kim, S. S. 2021. Bacterial pathogen detection by conventional culture-based and recent alternative (polymerase chain reaction, isothermal amplification, enzyme linked immunosorbent assay, bacteriophage amplification, and gold nanoparticle aggregation) methods in food samples: A review. Journal of Food Safety 41(1): 1-13.
- Kumar, H., Franzetti, L., Kaushal, A. and Kumar, D. 2019. *Pseudomonas fluorescens*: A potential food spoiler and challenges and advances in its detection. Annals of Microbiology 69: 873-883
- Lagier, J. C., Edouard, S., Pagnier, I., Mediannikov, O., Drancourt, M. and Raoult, D. 2015. Current and past strategies for bacterial culture in clinical microbiology. Clinical Microbiology Reviews 28(1): 208-236.
- Langaee, T. Y., Gagnon, L. and Huletsky, A. 2000. Inactivation of the *ampD* gene in *Pseudomonas aeruginosa* leads to moderate-basal-level and hyperinducible *AmpC* β-lactamase expression.

- Antimicrobial Agents Chemotherapy 44(3): 583-589.
- Langendonk, R. F., Neill, D. R. and Fothergill, J. L. 2021. The building blocks of antimicrobial resistance in *Pseudomonas aeruginosa*: Implications for current resistance-breaking therapies. Frontiers in Cellular and Infection Microbiology 11: 665759.
- Liang, J., Huang, T. Y., Li, X. and Gao, Y. 2023. Germicidal effect of intense pulsed light on *Pseudomonas aeruginosa* in food processing. Frontiers in Microbiology 14: 1-8.
- Li, X., Gu, N., Huang, T. Y., Zhong, F. and Peng, G. 2023. *Pseudomonas aeruginosa*: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Frontiers in Microbiology 13: 1114199.
- Liu, Z., Hu, S., Soteyome, T., Bai, C., Liu, J., Wang, Z., ... and Zhenbo, X. 2021. Intense pulsed light for inactivation of foodborne Grampositive bacteria in planktonic cultures and bacterial biofilms. LWT Food Science and Technology 152: 1-6.
- Machado, S. G., Baglinière, F., Marchand, S., Coillie, E., Vanetti, M. C. D., Block, J. D. and Heyndrickx, M. 2017. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Frontiers in Microbiology 8: 302.
- Madigan, M. and Martinko, J. 2006. Brock biology of microorganisms. 11th ed. United States: Prentice Hall.
- Maggio, F., Rossi, C., Chaves-Lopez, C., Serio, A., Valbonetti, L., Pomilio, F., ... and Paparella, A. 2021. Interactions between *L. monocytogenes* and *P. fluorescens* in dual-species biofilms under simulated dairy processing conditions. Foods 10: 176.
- Maifreni, M., Frigo, F., Bartolomeoli, I., Buiatti, S., Picon, S. and Marino, M. 2015. Bacterial biofilm as a possible source of contamination in the microbrewery environment. Food Control 50: 809-814.
- Makharita, R. R., El-Kholy, I., Hetta, H. F., Abdelaziz, M. H., Hagagy, F. I., Ahmed, A. A. and Algammal, A. M. 2020. Antibiogram and genetic characterization of carbapenemresistant Gram-negative pathogens incriminated in healthcare-associated

- infections. Infection and Drug Resistance 13: 3991-4002.
- Malhotra, S., Sidhu, S. K. and Devi, P. 2015.

 Assessment of bacteriological quality of drinking water from various sources in Amritsar district of northern India. The Journal of Infection in Developing Countries 9(8): 844-848.
- Marchand, S., De Block, J., De Jonghe, V., Coorevits, A., Heyndrickx, M. and Herman, L. 2012. Biofilm formation in milk production and processing environments; influence on milk quality and safety. Comprehensive Reviews in Food Science and Food Safety 11(2):133-147.
- Marchand, S., Vandriesche, G., Coorevits, A., Coudijzer, K., De Jonghe, V., Dewettinck, K., ... and De Block, J. 2009. Heterogeneity of heat-resistant proteases from milk *Pseudomonas* species. International Journal of Food Microbiology 133: 68-77.
- Marrez, D. and Sultan, Y. 2016. Antifungal activity of the cyanobacterium *Microcystis aeruginosa* against mycotoxigenic fungi. Journal of Applied Pharmaceutical Science 6(11): 191-198.
- Marrez, D., Sultan, Y. and Embaby, M. 2017. Biological activity of the cyanobacterium *Oscillatoria brevis* extracts as a source of nutraceutical and bio-preservative agents. International Journal of Pharmacology 13(8): 1010-1019.
- Martins, M. L., Pinto, U. M., Riedel, K. and Vanetti, M. C. D. 2015. Milk-deteriorating exoenzymes from *Pseudomonas fluorescens* 041 isolated from refrigerated raw milk. Brazilian Journal of Microbiology 46(1): 207-217.
- Mastropaolo, M. D., Silby, M. W., Nicoll, J. S. and Levy, S. B. 2012. Novel genes involved in *Pseudomonas fluorescens* Pf0-1 motility and biofilm-formation. Applied and Environmental Microbiology 78(12): 4318-4329.
- Meliani, A. and Bensoltane, A. 2015. Review of *Pseudomonas* attachment and biofilm formation in food industry. Poultry, Fisheries and Wildlife Sciences 2: 126.
- Mellor, G. E., Bentley, J. A. and Dykes, G. A. 2011. Evidence for a role of biosurfactants produced by *Pseudomonas fluorescens* in the spoilage of fresh aerobically stored chicken meat. Food Microbiology 28(5): 1101-1104.

- Meng, L., Liu, H., Lan, T., Dong, L., Hu, H., Zhao, S., ... and Wang, J. 2020. Antibiotic resistance patterns of *Pseudomonas* spp. isolated from raw milk revealed by whole genome sequencing. Frontiers in Microbiology 11: 1005.
- Meng, L., Zhang, Y., Liu, H., Zhao, S., Wang, J. and Zheng, N. 2017. Characterization of *Pseudomonas* spp. and associated proteolytic properties in raw milk stored at low temperatures. Frontiers in Microbiology 8: 1-7.
- Merino, N., Garcia-Castillo, C., Berdejo, D., Pagan, E., Garcia-Gonzalo, D. and Pagan, R. 2024. Comparative analysis of commercial cleaning and disinfection formulations and protocols for effective eradication of biofilms formed by a *Pseudomonas fluorescens* strain isolated from a poultry meat plant. Food Control 164: 1-9.
- Mesquita, C. S., Soares-Castro, P., Santos, P. M. and Mendez-Vilas, A. 2013. *Pseudomonas aeruginosa*: Phenotypic flexibility and antimicrobial resistance. Journal of Technology and Science Education 1: 650-665.
- Mhenni, N. B., Algerghini, G., Giaccone, V., Alessandro, T. and Paolo, C. 2023. Prevalence and antibiotic resistance phenotypes of *Pseudomonas* spp. in fresh fish fillets. Foods 12: 950.
- Milligan, E. G., Calarco, J., Davis, B. C., Keenum, I. M., Liguori, K., Pruden, A. and Harwood, V. J. 2023. A systematic review of culture-based methods for monitoring antibiotic-resistant *Acinetobacter, Aeromonas*, and *Pseudomonas* as environmentally relevant pathogens in wastewater and surface water. Current Environmental Health Reports 10: 154-171.
- Mohamed, H. M. A., Alnasser, S. M., Abd-Elhafeez, H. H., Alotaibi, M., Batiha, G. E. S. and Younis, W. 2022. Detection of β-lactamase resistance and biofilm genes in *Pseudomonas* species isolated from chickens. Microorganisms 10: 1-19.
- Mohareb, F., Iriondo, M., Doulgeraki, A. I., Van Hoek, A., Aarts, H., Cauchi, M. and Nychas, G. J. E. 2015. Identification of meat spoilage gene biomarkers in *Pseudomonas putida* using gene profiling. Food Control 57: 152-160.
- Moissenet, D. and Khedher, M. 2011. Virulence factors in *Pseudomonas aeruginosa*:

- Mechanisms and modes of regulation. Annales de Biologie Clinique: 69(4): 393-403.
- Molina, G., Pimentel, M. and Pastore, G. 2013. *Pseudomonas*: A promising biocatalyst for the bioconversion of terpenes. Applied Microbiology and Biotechnology 97(5): 1851-1864.
- Moore, E. R. B., Tindall, B. J., Dos Santos, V. A. P.
 M., Pieper, D. H., Ramos, J. L. and Palleron,
 N. J. 2006. Nonmedical: *Pseudomonas*. In
 Dworkin, M., Falkow, S., Rosenberg, E.,
 Schleifer, K.-H., Stackebrandt, E. (eds).
 Prokaryotes: A Handbook on the Biology of
 Bacteria, p. 646-703. United States: Springer.
- Moradali, M. F., Ghods, S. and Rehm, B. H. A. 2017. *Pseudomonas aeruginosa* lifestyle: A paradigm for adaptation, survival, and persistence. Frontiers in Cellular and Infection Microbiology 7: 1-29.
- Morales, P. A., Aguirre, J. S., Troncoso, M. R. and Figueroa, G. O. 2016. Phenotypic and genotypic characterization of *Pseudomonas* spp. present in spoiled poultry fillets sold in retail settings. LWT Food Science and Technology 73: 609-614.
- Moretro, T. and Langsrud, S. 2017. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Comprehensive Reviews in Food Science and Food Safety 16: 1022-1041.
- Naghmouchi, K., Lay C. L., Baah, J. and Drider, D. 2012. Antibiotic and antimicrobial peptide combinations: Synergistic inhibition of *Pseudomonas fluorescens* and antibiotic-resistant variants. Research in Microbiology 163: 101-108.
- Neto, N. J. G., Da Silva-Luz, I., Honorio, G. V., Da Conceicao, L. and De Souza, V. G. 2012. *Pseudomonas aeruginosa* cells adapted to *Rosmarinus officinalis* L. essential oil and 1,8-cineole acquire no direct and cross protection in a meat-based broth. Food Research International 49: 143-146.
- Nowak, A., Rygala, A., Oltuszak-Walczak, E. and Walczak, P. 2012. The prevalence and some metabolic traits of *Brochothrix thermosphacta* in meat and meat products packaged in different ways. Journal of the Science of Food and Agriculture 92: 1304-1310.

- Odeyemi, O. A., Alegbeleye, O. O., Strateva, M. and Stratev, D. 2020. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive Reviews in Food Science and Food Safety 19(2): 311-331.
- Olsen, I. 2015. Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology Infection Disease 34(5): 877-886.
- Pazdzior, E. 2016. Shewanella putrefaciens A new opportunistic pathogen of freshwater fish. Journal of Veterinary Research 60(4): 429-434.
- Poursina, S., Ahmadi, M., Fazeli, F. and Ariaii, P. 2023. Assessment of virulence factors and antimicrobial resistance among the *Pseudomonas aeruginosa* strains isolated from animal meat and carcass samples. Veterinary Medicine and Science 9: 315-325.
- Puga, C. H., Dahdough, E., Sanjose, C. and Orgaz, B. 2018. *Listeria monocytogenes* colonized *Pseudomonas fluorescens* biofilms and induces matrix over-production. Frontiers in Microbiology 9: 1706.
- Quigley, L., O'Sullivan, O., Stanton, C., Beresford,
 T. P., Ross, R. P., Fitzgerald, G. F. and Cotter,
 P. D. 2013. The complex microbiota of raw milk. FEMS Microbiology Reviews 37(5): 664-698.
- Quintieri, L., Caputo, L., Brasca, M. and Fanelli, F. 2021. Recent advances in the mechanisms and regulation of QS in dairy spoilage by *Pseudomonas* spp. Foods 10: 3088.
- Quintieri, L., Fanelli, F. and Caputo, L. 2019. Antibiotic resistant *Pseudomonas* spp. spoilers in fresh dairy products: An underestimated risk and the control strategies. Foods 8: 1-32.
- Rajmohan, S., Dodd, C. E. R. and Waites, W. M. 2002. Enzymes from isolates *Pseudomonas fluorescens* involved in food spoilage. Journal of Applied Microbiology 93: 205-213.
- Redondo-Nieto, M., Lloret, J., Larenas, J., Barahona, E., Navazo, A., Martinez-Granero, F., ... and Martin, M. 2008. Transcriptional organization of the region encoding the synthesis of the flagella filament in *Pseudomonas fluorescens*. Journal of Bacteriology 190(11): 4106-4109.
- Reichler, S. J., Trmčič, A., Martin, N. H., Boor, K. J. and Wiedmann, M. 2018. *Pseudomonas fluorescens* group bacterial strains are responsible for repeat and sporadic post

- pasteurization contamination and reduced fluid milk shelf life. Journal of Dairy Science 101(9): 7780-7800.
- Rezaloo, M., Motalebi, A., Mashak, Z. and Anvar, A. 2022. Prevalence, antimicrobial resistance, and molecular description of *Pseudomonas aeruginosa* isolated from meat and meat products. Journal of Food Quality 2022: 9899338.
- Robleto, E. A., Lopez-Hernandez, I., Silby, M. W. and Levy, S. B. 2003. Genetic analysis of the *AdnA* regulon in *Pseudomonas fluorescens*: Nonessential role of flagella in adhesion to sand and biofilm formation. Journal of Bacteriology 185(2): 453-460.
- Rocha, A. J., Barsottini, M. R. D. O., Rocha, R. R., Laurindo, M. V., Moraes, F. L. L. D. and Rocha, S. L. D. 2019. *Pseudomonas aeruginosa*: Virulence factors and antibiotic resistance genes. Brazilian Archives of Biology and Technology 62: 1-15.
- Romalho, R., Cunha, J., Teixeira, P. and Gibbs, P. A. 2002. Modified *Pseudomonas* agar: New differential medium for the detection/enumeration of *Pseudomonas aeruginosa* in mineral water. Journal of Microbial Methods 49(1): 69-74.
- Rossi, C., Chaves-Lopez, C., Serio, A., Goffredo, E., Goga, B. T. and Paparella, A. 2016. Influence of incubation conditions on biofilm formation by *Pseudomonas fluorescens* isolated from dairy products and dairy manufacturing plants. Italian Journal of Food Safety 5(3): 154-157.
- Rossignol, G., Sperandio, D., Guerillon, J., Duclairoir, P. C., SoumSoutera, E., Orange, N., ... and Merieau, A., 2009. Phenotypic variation in the *Pseudomonas fluorescens* clinical strain MFN1032. Research in Microbiology 160: 337-344.
- Ruiz-Roldan, L., Rojo-Bezares, B., Lozano, C., Lopez, M., Chichon, G., Torres, C. and Saenz, Y. 2021. Occurrence of *Pseudomonas* spp. in raw vegetables: Molecular and phenotypical analysis of their antimicrobial resistance and virulence-related traits. International Journal of Molecular Science 22: 1-13.
- Saad, Z. A., Nasef, S. A., Elhariri, M., Elhelw, R. and Ezzeldeen, N. 2017. Resistance patterns associated with bacterial pathogens causing omphalitis in baby chicks. Bioscience Research 14(4): 845-851.

- Sabeq, I., Awad, D., Hamad, A., Nabil, M., Aboubakr, M., Abaza, M., ... and Edris, S. 2022. Prevalence and molecular characterization of foodborne and human-derived *Salmonella* strains for resistance to critically important antibiotics. Transboundary and Emerging Diseases 69: 2153-2163.
- Sabry, M., Mabrouk, M., Marrez, D., Barakat, O. and Sedik, M. 2016. Antagonistic pigment producing bacterium isolated from rhizosphere soil of medicinal plants. Journal of Drug Research Egypt 36(1): 87-96.
- Samaržija, D., Zamberlin, S. and Pogačić, T. 2012. Psychrotrophic bacteria and milk and dairy products quality. Mljekarstvo 62(2): 77-95.
- Scatamburlo, T. M., Yamazi, A. K., Cavicchioli, V. Q., Pieri, F. A. and Nero, L. A. 2015. Spoilage potential of *Pseudomonas* species isolated from goat milk. Journal of Dairy Science 98(2): 759-764.
- Schroth, M. N., Cho, J. J., Green, S. K. and Kominos,
 S. D. 2018. Epidemiology of *Pseudomonas* aeruginosa in agricultural areas. Journal of Medical Microbiology 67: 1191-1201.
- Shabana, B. M. Elkenany, R. M. and Younis, G. 2022. Sequencing and multiple antimicrobial resistance of *Pseudomonas fluorescens* isolated from Nile tilapia fish in Egypt. Brazilian Journal of Biology 84: 1-9.
- Shukla, S. and Mishra, P. 2015. *Pseudomonas aeruginosa* infection in broiler chicks in Jabalpur. International Journal of Environmental Research and Public Health 6: 37-39.
- Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B. and Jackson, R. W. 2011. *Pseudomonas* genomes: Diverse and adaptable. FEMS Microbiology Reviews 35(4): 652-680.
- Sillankorva, S., Neubauer, P. and Azeredo, J. 2008. *Pseudomonas fluorescens* biofilms subjected to phage phiIBB-PF7A. BMC Biotechnology 8: 79.
- Sofos, J. N. and Geornaras, I. 2010. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of *Escherichia coli* O157:H7 in nonintact, and *Listeria monocytogenes* in ready-to-eat, meat products. Meat Science 86: 1-14.

- Stellato, G., Utter, D. R., Voorhis, A., De Angelis, M., Eren, A. M. and Ercolini, D. 2017. A few *Pseudomonas* oligotypes dominate in the meat and dairy processing environment. Frontiers in Microbiology 8: 264.
- Stoops, J., Maes, P., Claes, J. and Van Campenhout, L. 2012. Growth of *Pseudomonas fluorescens* in modified atmosphere packaged tofu. Letters in Applied Microbiology 54(3): 195-202.
- Sultan, Y., Ali, M., Darwesh, O., Embaby, M. and Marrez, D. 2016. Influence of nitrogen source in culture media on antimicrobial activity of *Microcoleus lacustris* and *Oscillatoria rubescens*. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(2): 1444-1452.
- Sung, S., Sin, L., Tee, T., Bee, S., Rahmat, A., Rahman, W., ... and Vikhraman, M. 2013. Antimicrobial agents for food packaging applications. Trends in Food Science and Technology 33: 110-123.
- Taee, S. R., Khansarinejad, B., Abtahi, H., Najafimosleh, M. and Ghaznavi-Rad, E. 2014. Detection of *algD*, *oprL* and *exoA* genes by new specific primers as an efficient, rapid and accurate procedure for direct diagnosis of *Pseudomonas aeruginosa* strains in clinical samples. Jundishapur Journal of Microbiology 7: 10
- Taguett, F., Boisset, C., Heyraud, A., Buon, L. and Kaci, Y. 2015. Characterization and structure of the polysaccharide produced by *Pseudomonas fluorescens* strain TF7 isolated from an arid region of Algeria. Comptes Rendus Biologies 338(5): 335-342.
- Tang, Y., Ali, Z., Zou, J., Jin, G., Zhu, J., Yang, J. and Dai, J. 2017. Detection methods for *Pseudomonas aeruginosa*: History and future perspective. Royal Society of Chemistry Advances 7: 51789-51800.
- Thomassen, M. B., Reiche, T., Tennfjord, C. E. and Mehli, L. 2022. Antibiotic resistance properties among *Pseudomonas* spp. associated with salmon processing environments. Microorganisms 10: 1420.
- Veetilvalappil, V. V., Manuel, A., Aranjani, J. M., Tawale, R. and Koteshwara, A. 2022. Pathogenic arsenal of *Pseudomonas aeruginosa*: An update on virulence factors. Future Microbiology 17(6): 465-481.

- Wang, C., Ye, Q., Jiang, A., Zhang, J., Shang, Y., Li, F., ... and Wang, J. 2022. *Pseudomonas aeruginosa* detection using conventional PCR and quantitative real-time PCR based on species-specific novel gene targets identified by pangenome analysis. Frontiers in Microbiology 13: 1-16.
- Wang, H., Cai, L., Li, Y., Xu, X. and Zhou, G. 2018. Biofilm formation by meat-borne *Pseudomonas fluorescens* on stainless steel and its resistance to disinfectants. Food Control 91: 397-403.
- Wen, S., Mai, Y., Chen, X., Xiao, K., Lin, Y., Xu, Z. and Yang, L. 2023. Molecular epidemiology and antibiotic resistance analysis of non-typeable haemophilus influenzae (NTHi) in Guangzhou: A representative city of southern China. Antibiotics 12: 656.
- Wessel, A. K., Liew, J., Kwon, T., Marcotte, E. M. and Whiteley, M. 2013. Role of *Pseudomonas aeruginosa* peptidoglycan-associated outer membrane proteins in vesicle formation. Journal of Bacteriology 195(2): 213-219.
- Wong, J. K., Ramli, S. and Son, R. 2023. A review: Characteristics and prevalence of psychrotolerant food spoilage bacteria in chill-stored meat, milk and fish. Food Research 7(1): 23-32.
- Wong, M. H. Y., Chan, E. W. C. and Chen, S. 2015. Isolation of carbapenem-resistant *Pseudomonas* spp. from food. Journal of Global Antimicrobial Resistance 3: 109-114.
- Woods, R. G., Burger, M., Beven, C. A. and Beacham, I. R. 2001. The *aprX-lipA* operon of *Pseudomonas fluorescens* B52: A molecular analysis of metalloprotease and lipase production. Microbiology 147(2): 345-354.
- Xin, X. F., Kvitko, B. and He, S. Y. 2018. *Pseudomonas syringae*: What it takes to be a pathogen. Nature Reviews Microbiology 16: 316-328.
- Xu, Y., Chen, W., You, C. and Liu, Z. 2017. Development of a multiplex PCR assay for detection of *Pseudomonas fluorescens* with biofilm formation ability. Journal of Food Science 82: 2337-2342.
- Xu, Z., Huang, T., Min, D., Soteyome, T., Lan, H., Hong, W., ... and Kjellerup, B. V. 2022. Regulatory network controls microbial biofilm development, with *Candida albicans* as a

- representative: From adhesion to dispersal. Bioengineered 13(1): 253-267.
- Xu, Z., Liu, Z., Soteyome, T., Hua, J., Zhang, L., Yuan, L., ... and Li, Y. 2021. Impact of *pmrA* on *Cronobacter sakazakii* planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiology 98: 1-8.
- Yang, Y., Miks-Krajnik, M., Zheng, Q., Lee, S. B., Lee, S. C. and Yuk, H. G. 2016. Biofilm formation of *Salmonella* Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiology 54: 98-105.
- Yuan, L., Sadiq, F. A., Wang, N., Yang, Z. and He, G. 2021. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Critical Reviews in Food Science and Nutrition 61: 3876-3891.
- Zhang, W. W., Hu, Y. H., Wang, H. L. and Sun, L. 2009. Identification and characterization of a virulence-associated protease from a pathogenic *Pseudomonas fluorescens* strain. Veterinary Microbiology 139: 183-188.
- Zhou, Y., Wan, Q., Cai, Z., Lu, M., Qu, X. and Wu, Q. 2020. Development and evaluation of loop-mediated isothermal amplification-based kit for rapid detection of *Pseudomonas aeruginosa* in packaged drinking water. Microbiology China 47: 1982-1992.